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Abstract
Diffusive-like and propagating solutions of the generalized Langevin equation
for mass–concentration fluctuations for liquid non-ionic binary mixtures are
studied. A condition of existence for longitudinal optical-like excitations is
derived. The results obtained from the approach developed are compared
against simulation results for the dense mixtures KrAr and He0.65Ne0.35.
Amplitudes of contributions from optical-like excitations to the spectral
functions are discussed.

Collective dynamics in binary liquids has been for a long time a matter of debate, especially
as regards the existence of high-frequency propagating excitations and the possibility of
observing their manifestation in experimental intensity spectral functions. While for coulombic
liquids [1] the existence of propagating charge waves (by analogy with optical phonons in solids
they have been called optical-like excitations) is well established, it is not known how one
should interpret high-frequency excitations in non-ionic mixtures. In recent papers [2, 3] we
studied the transverse dynamics of Lennard-Jones and metallic mixtures within the generalized
collective modes (GCM) approach [4] and found that transverse optical-like excitations can
exist even in non-ionic binary liquids. It was shown that the damping of mass–concentration
propagating modes is very important for estimation of their dispersion relations. In the long-
wavelength limit the damping of transverse optical-like excitations is determined by the value
of the mutual diffusion and the static structure factor Sxx(k), which at k = 0 is a measure of how
close the binary mixture is to demixing. In this letter we report a GCM study of longitudinal
high-frequency dynamics in binary mixtures. The main aim is to show that there exist optical-
like solutions for the generalized Langevin equation. Using an analytical three-variable model
to treat mass–concentration fluctuations, we will show that optical-like (mass–concentration)
propagating excitations must exist in non-ionic liquid mixtures, but may be suppressed in
some cases by special conditions. Numerical examples from MD simulations of two binary
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mixtures, the Lennard-Jones liquid KrAr and a ‘fast-sound’ gas mixture He0.65Ne0.35, will be
used to show the applicability of the approach developed.

Let us introduce a dynamical variable for the mass–concentration density:

nx(k, t) = 1

m̄
{m1x2n1(k, t) − m2x1n2(k, t)}, (1)

where

nα(k, t) = 1√
N

Nα∑
i=1

eik·rα,i (t), α = 1, 2,

are the ordinary variables for partial densities,mα and xα = mαcα/m̄, are the atomic masses and
mass–concentration factors, respectively, and m̄ = m1c1 + m2c2. The reason for introducing a
dynamical variable nx(k, t) in the form (1) is that it is proportional to the ordinary concentration
density nc(k, t) and at the same time it is connected to the longitudinal component of the mass–
concentration current J L

x (k, t) (introduced in [2]) by a simple relation:
∂nx

∂ t
= ik

m̄
J L

x (k, t). (2)

The mass–concentration density nx(k, t) is a hydrodynamic variable and,along with dynamical
variables for the total density nt (k, t), the total mass–current density Jt (k, t) and the energy
density ε(k, t), is commonly used for the hydrodynamic description of binary systems in the
liquid state. It was shown in [2] that Jx(k, t) is a dynamical variable orthogonal to Jt (k, t),
and its real-space representation reflects the out-of-phase motion for neighbours of different
kinds.

In the case of longitudinal dynamics the basis set for our analytical GCM treatment of
mass–concentration fluctuations consists of three dynamical variables:

A(3x) = {nx(k, t), J L
x (k, t), J̇ L

x (k, t)}. (3)

Here, J̇ L
x (k, t) is the first time derivative of the longitudinal mass–concentration current. The

only hydrodynamic variable in this basis set is nx(k, t); the other two dynamical variables
describe shorter-time fluctuations. The basis set (3) corresponds to the same level of short-time
fluctuation treatment as was applied in the analytical study of transverse dynamics in binary
liquids [2, 3]. Solving the generalized Langevin equation in terms of the dynamical eigenmodes
with finite lifetimes is reduced within the GCM method to the eigenvalue problem for a
generalized hydrodynamic matrix T(k) generated using a chosen set of dynamical variables.
When the hydrodynamicbasis set is used, one obtains within the GCM method the well-known
expressions for hydrodynamic modes and hydrodynamic time correlation functions.

The generalized hydrodynamic matrix for description of solely mass–concentration
fluctuations (for simplicity we neglect the coupling to total density and energy fluctuations)
can be constructed using the basis set of dynamical variables A(3x):

T(k) =



0 −ikm̄−1 0
0 0 −1

−im̄k−1[〈ω̄4
k 〉 − 〈ω̄2

k 〉]τ−1
xx 〈ω̄4

k 〉 [〈ω̄4
k 〉〈ω̄2

k 〉−1 − 1]τ−1
xx


 . (4)

Here, the correlation time

τxx (k) = S−1
xx (k)

∫ ∞

0
Fxx (k, t) dt, Fxx (k, t) = 〈nx (k, 0)n∗

x(k, t)〉
is associated with mass–concentration fluctuations in non-ionic liquid mixtures and behaves
like k−2 in the limit k → 0. The normalized frequency moments are expressed, via statistic
averages of microscopic quantities as follows:

〈ω̄2
k 〉 = k2〈J L

x J L
x 〉

m̄2〈nx nx 〉 ≡ k2x1x2kB T

m̄Sxx (k)
, 〈ω̄4

k 〉 = 〈 J̇ L
x J̇ L

x 〉
〈J L

x J L
x 〉 , (5)
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where the static average 〈 J̇ L
x J̇ L

x 〉 tends to a constant in the k → 0 limit [5]. Eigenvalues
of the matrix T(k) represent mass–concentration collective modes with finite lifetimes, which
either correspond to purely relaxing behaviour (real eigenvalues di(k)) or describe propagating
processes (pairs of complex conjugate eigenvalues z±

i (k)).
Solving the three-by-three eigenvalue problem for the matrix T(k) in the limit k → 0, one

gets within the precision O(k2) that the lowest eigenvalue is simply

d(k) = τ−1
xx (k) ≡ D12k2, (6)

where D12 is the mutual diffusion coefficient [6] taking into account that no other processes
contribute to the shape of Fxx (k, t) within our model. The other two eigenvalues tend in the
long-wavelength limit to the constant values

z±(k → 0) = �(k) ±
√

�2(k) − 〈ω̄4
k 〉, �(k) = 〈ω̄4

k 〉
2τxx (k)〈ω̄2

k 〉
. (7)

If the quantity under the square root in equation (7) is negative, the eigenvalues z±
correspond to the propagating modes with the damping coefficient �(k) and frequency

ω(k) =
√

〈ω̄4
k 〉 − �2(k). Thus, we have arrived at the condition for existence for mass–

concentration wave (optical-like) excitations:

δx(k) = 〈ω̄4
k 〉

(2τxx (k)〈ω̄2
k 〉)2

< 1, (8)

which, in the limit k → 0, reads as follows:

δx = 〈ω̄4
k=0〉D2

12 S2
xx (k = 0)m̄2

4(x1x2kB T )2
< 1. (9)

This condition is, remarkably, of the same form as that obtained for the case of transverse
optical-like excitations [2, 3] using the two-variable basis set A(2T ) = {J T

x (k, t), J̇ T
x (k, t)}:

δT
x = 〈ω̄2,T

k=0〉D2
12 S2

xx (k = 0)m̄2

4(x1x2kB T )2
< 1. (10)

The only difference is that the normalized second frequency moment 〈ω̄2,T
k=0〉 of the transverse

current–current spectral function CT
xx (k, ω) appears instead of the normalized fourth frequency

moment 〈ω̄4
k=0〉 of the dynamic structure factor Sxx (k, ω) for the longitudinal case (9). These

quantities differ at k = 0 only in the case of long-range Coulomb interaction between particles
(ionic liquids), while for mixtures of non-ionic particles, for symmetry reasons, they take the
same values in the long-wavelength limit.

In order to illustrate how good the analytical GCM approach applied above to the
analysis of mass–concentration fluctuations is, we show in figure 1 the imaginary parts of the
propagating eigenvalues for the equimolar mixture KrAr at 116 K and the dense gas mixture
with disparate masses He0.65Ne0.35 at 39.5 K. The spectra of longitudinal collective excitations
have been obtained within the numerical parameter-free 14-variable GCM approach using the
extended basis set

A(14)(k, t) = {nt(k, t), nx (k, t), J L
t (k, t), J L

x (k, t), ε(k, t), J̇ L
t (k, t), J̇ L

x (k, t), ε̇(k, t),

J̈ L
t (k, t), J̈ L

x (k, t), ε̈(k, t),
...

J L
t (k, t),

...

J L
x (k, t),

...
ε (k, t)}, (11)

which allows one to take into account the cross-correlations between long- and short-time
processes of different origin (total density, mass–concentration and heat fluctuations). All the
matrix elements of the 14 × 14 generalized hydrodynamic matrix T(k) were evaluated directly
in MD simulations, so no free parameters have been used in our approach. MD simulations
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Figure 1. Dispersions of sound (z1(k)) and high-frequency (z2(k)) excitations in the equimolar
Lennard-Jones mixture KrAr at 116 K and the dense gas mixture He0.65Ne0.35 at 39.3 K,
calculated numerically in the GCM approach for the basis set A(14)(k, t). Dashed and solid curves
correspond to dynamical eigenmodes obtained by separate treatment of the dynamics using the
sets A(5x)(k, t) = {nx , J L

x , J̇ L
x , J̈ L

x ,
...

J L
x } and A(5t)(k, t) = {nt , J L

t , J̇ L
t , J̈ L

t ,
...

J L
t }, respectively.

Dotted vertical lines approximately separate the short-wavelength regions of ‘partial’ behaviour of
branches. The branch z2(k) corresponds in the long-wavelength region to optical-like excitations
in KrAr, while for He0.65Ne0.35 the optical-like excitations are suppressed.

were performed in a standard microcanonical ensemble with systems of 864 and 1000 particles
for KrAr and He0.65Ne0.35, respectively. The smallest wavenumbers kmin reached in the MD
simulations were 0.1735 Å−1 for KrAr and 0.1664 Å−1 for He0.65Ne0.35. The time evolution
of dynamical variables from the basis set A(14)(k, t) was recorded from the production run
over 3 × 105 time steps. The number of dynamical variables was chosen to be in agreement
with the nine-variable basis set used for the case of simple liquids [9, 10] with time derivatives
of hydrodynamic variables up to the third order included, which allowed us to obtain a good
description of the sound and heat wave branches for simple liquids. Let us analyse the results for
the KrAr mixture first. The branch z1(k) corresponds to the hydrodynamic sound excitations
with linear dispersion in the small-wavenumber region. Branch z2(k) in the long-wavelength
limit is caused by mass–concentration fluctuations and can be reproduced by treatment of
solely dynamical variables describing mass–concentration fluctuations (the dashed curve in
figure 1).

Dotted vertical lines in figure 1 separate two regions of wavenumbers in which the
collective (small-k) or partial (large-k) forms of dynamics prevail. The main ideas of such
specialized studies can be found in [2, 3]. We note that only for larger wavenumbers can
the dispersion of propagating modes, shown in figure 1, be described well in terms of
‘partial’ properties of light (high-frequency branch z2(k)) and heavy (low-frequency one,z1(k))
particles based on separate sets of ‘partial’ dynamic variables. One can see in figure 1 that for
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Figure 2. The condition for existence of optical-like excitations δx (k) (8) as a function of
wavenumber for KrAr and He0.65Ne0.35. Optical-like excitations exist in the long-wavelength
region only when δx (k) < 1.

the case of the dense gas mixture He0.65Ne0.35 the short-wavelength region of ‘partial’ dynamics
begins at much smaller wavenumbers than that for KrAr. Moreover, in the long-wavelength
limit, in contrast to the branch patterns in KrAr, there exists only one branch of propagating
sound excitations z1(k) with linear dispersion (the estimated speed of sound is 324 m s−1),
while the branch z2(k) is suppressed in the He0.65Ne0.35 mixture when k → 0. Note that the
treatment of solely mass–concentration dynamical variables in the small-k region does not
produce an optical-like branch (the dashed line is absent for He0.65Ne0.35). The analytical
approach, developed above, allows us to explain the structure of the eigenmodes in the k → 0
limit via the condition (9), which is valid in the case of KrAr and is not fulfilled for He0.65Ne0.35.
For comparison, for He0.65Ne0.35 the mutual diffusion coefficient D12 = 12.55×10−5 cm2 s−1

is more than five times larger than for KrAr (D12 = 2.5 × 10−5 cm2 s−1), and in addition the
mixture He0.65Ne0.35 shows a stronger tendency of demixing that is reflected in the larger
value of the structure factor Sxx (k) at k = 0 (see [7]). In particular, this explains why the
‘partial’ branch z2(k) for He0.65Ne0.35 does not display the crossover to optical-like character
with decreasing wavenumbers and vanishes at the non-zero value k � 0.16 Å−1. In figure 2
one can see that the condition for existence of optical-like excitations (8) is fulfilled in the
case of KrAr and not for He0.65Ne0.35, which is a consequence of the high damping coefficient
�(k) (7) due to the high mutual diffusion and tendency of demixing in He0.65Ne0.35.

Along with frequencies and damping coefficients of the collective excitations, it is
important to find the relative strength of each mode contribution to the time correlation function
(or relevant dynamic structure factor) which we are interested in. The GCM approach enables
us to represent any dynamical structure factor (or relevant spectral function), describing the
correlations between two dynamical variables α(k, t) and β(k, t) from the set A(M)(k, t), as a
sum of mode contributions:

Sαβ(k, ω)

Sαβ(k)
=

Mrl∑
i

Aαβ

i (k)di(k)

ω2 + d2
i (k)

+
Mpr∑

i

Bαβ

i (k)�i(k) + Cαβ

i (k)(ω ± ωi (k))

(ω ± ωi (k))2 + �2
i (k)

(12)

with amplitudes Aαβ

i (k), Bαβ

i (k) and Cαβ

i (k), which can be expressed via the eigenvectors
associated with the relevant eigenvalues. The GCM expression (12) generalizes the
hydrodynamic form, known for dynamical structure factors [6], to the case of Mrl relaxing
modes and Mpr pairs of propagating excitations, supported by a liquid. Within the analytical
three-variable treatment (3), when one hydrodynamic relaxing mode (6) and the pair of
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Figure 3. Symmetric amplitudes Btt (k) of contributions from the hydrodynamic sound (z1(k))
and high-frequency (z2(k)) branches to the dynamical structure factor Stt (k, ω). The spline
interpolation is shown by solid curves.

propagating optical-like excitations (7) have been found, the amplitudes Axx (k) and Bxx (k)

corresponding to the dynamical structure factor Sxx(k, ω) can be written in the long-wavelength
limit as follows:

Axx (k) = 1 + k2	 + O(k4), Bxx(k) = −k2	 + O(k4) (13)

with

	 = 1

�2(0) + ω2(0)
{2�(0)D12 − x1x2kB T m̄−1}. (14)

It is seen in (14) that, depending on the values of the mutual diffusion coefficient, the
temperature and the damping of the optical-like branch �(0) at k = 0, the factor 	 can
be either positive or negative. Note that the expression (13) is quite general for description of
contributions from non-hydrodynamicpropagating modes to hydrodynamicspectral functions,
and this is the main reason that such modes are practically invisible in real experiments for
small k.

In figure 3 the k-dependences of the amplitudes Btt
1 (k) and Btt

2 (k) from the two propagating
branches z1(k) and z2(k) to the total dynamical structure factor Stt (k, ω), calculated for KrAr
and He0.65Ne0.35, are shown. These modes describe the density fluctuations and were obtained
numerically within the GCM approach using the basis set A(14)(k, t). For both systems the
amplitude of the hydrodynamicsound mode z1(k) tends in the k → 0 limit to the constant value
γ −1, predicted by the hydrodynamic theory, while the contribution from the high-frequency
optical-like mode z2(k) shows a fast decay when k decreases. The observed behaviour of Btt

2 (k)

strongly supports the recent experimental results obtained by Bafile et al [8] for He0.77Ne0.23,
in which clear side peaks in Sexp

tt (k, ω) were observed at frequencies that follow the linear
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hydrodynamic sound dispersion up to k � 1.8 Å−1. A similar picture of small contributions to
Stt (k, ω) from optical-like excitations z2(k) in comparison with the hydrodynamic sound ones
is observed for the KrAr mixture. However, it is possible to observe the contributions from
optical-like modes to one of the ten independent hydrodynamic spectral functions that can be
estimated for conserved dynamical variables. And, as follows from our previous papers [2, 3],
to obtain the correct dispersion of the high-frequency branch one must study in the small-
wavenumber region the positions of the maxima of the spectral function Cxx (k, ω), and not
those of the partial current–current spectral functions Cii (k, ω), i = 1, 2, because the ‘partial’
picture of the two branches is not valid in the small-wavenumber region (see, e.g., [11, 12]).

We conclude by making the following remarks:

(i) It is shown in general that there exist propagating solutions of the generalized Langevin
equation for mass–concentration fluctuations, which correspond to optical-like excitations
in a binary mixture.

(ii) We derived the condition for their existence in the small-k region.
(iii) It is shown that the high mutual diffusion and tendency of demixing (when mainly like

atoms surround a tagged particle) suppress the optical-like branch, and in this case the
damping of optical-like excitations is very strong and the frequency tends to zero at non-
zero wavenumber.

(iv) The analysis of mode contributions shows that for the systems considered it is impossible
to observe the optical-like branch z2(k) for the experimental total structure factor Stt(k, ω),
because its contribution to Stt (k, ω) decays as k2 when k decreases.

IM is grateful for the support of the Fonds zur Förderung der wissenschaftlichen Forschung
under Project no 15247.
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